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Statistics and characteristics of spatiotemporally rare intense events
in complex Ginzburg-Landau models
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We study the statistics and characteristics of rare intense events in two types of two-dimensional complex
Ginzburg-Landau~CGL! equation based models. Our numerical simulations show finite amplitude collapselike
solutions which approach the infinite amplitude solutions of the nonlinear Schro¨dinger equation in an appro-
priate parameter regime. We also determine the probability distribution function of the amplitude of the CGL
solutions, which is found to have enhanced~as compared to Gaussian! probability for the amplitude to be large.
Our results suggest a general picture in which an incoherent background of weakly interacting waves, occa-
sionally, ‘‘by chance,’’ initiates intense, coherent, self-reinforcing, highly nonlinear events.
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I. INTRODUCTION

Many spatiotemporal dynamical systems show rare
tense events. One example is that of large height rogue o
waves@1#. Another example occurs in recent experiments
parametrically forced surface waves on water in which h
spikes ~bursts! on the free surface form intermittently i
space and time@2#. Other diverse physical examples al
exist ~e.g., tornados, large earthquakes, etc.!. The character-
istic feature of rare intense events is an enhanced tail in
event size probability distribution function. Here, by e
hanced we mean that the event size probability distribu
function approaches zero with increasing event size m
more slowly than is the case for a Gaussian distributi
Thus these events, although rare, can be much more com
than an expectation based on Gaussian statistics would
cate. The central limit theorem implies Gaussian behavior
a quantity that results from the linear superposition of ma
random independent contributions. Non-Gaussian tail beh
ior can result from strong nonlinearity of the events, a
enhancement of the event size tail might be expected if la
amplitudes are nonlinearly self-reinforcing. Such nonline
self-reinforcements are present in the nonlinear Schro¨dinger
~NLS! equation. In particular, the two-dimensional NL
equation,

]A

]t
52 iauAu2A2 ib,2A, ~1!

exhibits ‘‘collapse’’ when the coefficientsa andb have the
same sign@3#. In a collapsing NLS solution, the comple
field approaches infinity at some point in space, and
singularity occurs at finite time. The NLS equation is cons
vative in that it can be derived from a Hamiltonian,]A/]t
52 idH/dA* , where H@A,A* #5 1

2 *@auAu41bu,Au2#dx.
In the case of nonconservative dynamics, inclusion
lowest-order dissipation and instability terms leads to
complex Ginzburg-Landau~CGL! equation @4#. The CGL
equation has been studied as a model for such diverse s
tion as chemical reaction@5#, Poiseuille flow@6#, Rayleigh-
1063-651X/2003/67~2!/026203~6!/$20.00 67 0262
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Bérnard convection@7#, and Taylor-Couette flow@8#. In the
limit of zero dissipation or instability, the CGL equation a
proaches the NLS equation. For small nonzero dissipatio
instability, the CGL equation displays a solution similar
the NLS collapse solution, but with a large finite~rather than
infinite! amplitude at the collapse time@3#. Furthermore,
over a sufficiently large spatial domain, these events oc
intermittently in space and time. Thus, in this parameter
gime, the CGL equation may be considered as a model
the occurrence of rare intense events.

In this paper, we study the statistics and characteristic
rare intense events in a two-dimensional CGL-based mo
The probability distribution function~PDF! of the amplitude
of the solutions is observed to be non-Gaussian in our
merical experiments. This non-Gaussian PDF is explained
the nonlinear characteristics of individual bursts combin
with the statistics of bursts. The model equation we inve
gate is

]A

]t
56A2~11 ia!uAu2A1~12 ib!,2A1~d r1 id i !A* ,

~2!

where (d r1 id i)A* is a parametric forcing term@9#. We will
consider two cases: one without parametric forcing (d r5d i
50), in which case the plus sign is chosen in front of t
first term on the right-hand side of Eq.~2! @Eq. ~2! is then the
usual CGL equation#, and one with parametric forcing, in
which case the minus sign is chosen. As previously d
cussed, we choose our parameters so that our model, Eq~2!,
is formally close to the NLS equation~1!. That is, we take
a,b@1,d r ,d i , and for our numerical solutions we will re
strict attention to the casea5b. Note that the coefficient
61 for the first term, as well as the ones in (11 ia) and
(11 ib) represent no loss of generality, since these can
obtained by suitable scaling of the time (t), the dependent
variable (A), and the spatial variable (x). In Sec. II, we
discuss the amplitude statistics of our two-dimensional C
models with and without the parametric forcing term. W
find that some of the PDF’s are roughly consistent with
©2003 The American Physical Society03-1



ar
ca
a

V

r
ili
c

re
f
he
nd
lo

ve

dl

er
n

on

e
a

i-

ns
ll

will

-

LS
the

c-

li-
,
a-

for

ns

ues

ch
e
-
tial
on
a-

is-

his
le
c-
the
ting

s
i-

ri-
he
y

-

J.-W. KIM AND E. OTT PHYSICAL REVIEW E67, 026203 ~2003!
stretched exponential distribution,P(uAu)'exp(2zuAuh),
whereh is less than 1. In Sec. III, we investigate the ch
acteristics of individual bursts. We compare our numeri
CGL results with known collapse solutions of the NLS equ
tion. The maximum amplitude obtained by many bursts~or
the ‘‘event size’’ statistics! is discussed in Sec. IV. Section
presents further discussion and conclusions.

Our results lead us to the following picture for the occu
rence of rare intense events in our system. Linear instab
and nonlinear wave saturation lead to an incoherent ba
ground of small amplitude waves. This background is
sponsible for the observedsmall uAu Gaussian behavior o
our probability distribution functions. When, by chance, t
weakly interacting waves locally superpose to create co
tions enabling nonlinear, coherent self-reinforcement, a
calized, collapselike event is initiated. Collapse takes o
promoting large, rapid growth and spiking ofA. This is fol-
lowed by a burn-out phase in which the energy is rapi
dissipated due to the generation of small scale structure
the spike. We believe that elements of the above gen
picture may be relevant to a variety of physical situatio
where rare intense events occur~e.g., the parametrically
driven water wave experiments in Ref.@2#!.

II. AMPLITUDE STATISTICS

A. Two-dimensional model without parametric force
„d rÄd iÄ0…

We first consider Eq.~2! with d r5d i50 and with the plus
sign in the first term on the right-hand side of the equati
Figure 1~a! shows a representation ofuA(x,t)u @from numeri-
cal solution of Eq.~2!# at a fixed instantt, where large values
are indicated by darker gray shades. As a function of tim
the localized dark shades occur in a seemingly random m
ner, become darker~i.e., increase their amplitude!, and then
go away~become light!. Furthermore, the maximum ampl
tudes also display apparent randomness,@see Fig. 1~b!#. As
shown in Sec. III, although the occurrence of these inte
events is apparently erratic in time and space, individua

FIG. 1. Solutions of the CGL model.~a! Snapshot of the ampli-
tude uAu for L520p, a5b530, Dt51025,d r5d i50, and a 256
3256 grid. ~b! Amplitude profile vs time. Solid line indicate
uAumax of the whole system, while thick solid lines indicate max
mum amplitude of the localized events~‘‘bursts’’ !. The dashed line
indicates the average amplitude ofuAu over the whole system
uAuavg;0.3.
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these events are highly coherent. In this section, we
study the statistical properties ofA(x,t).

Our numerical solutions of Eq.~2! employ periodic
boundary conditions on a 2563256 grid. We choose the pa
rameters,a and b, large enough (a5b530) so that the
solutions of our model are close to solutions of the N
equation. We choose the time step small enough to satisfy
condition for unconditional stability of our second-order a
curate time integration (Dt51025). We use random initial
condition ~at t50, we generate random values for amp
tudes and phases at each grid point!. Localized structures
‘‘bursts,’’ develop very rapidly and occur throughout the sp
tial domain. The typical lifetime of a burst (dt) is '0.2 time
units. The maximum amplitudes of bursts are different
different burst events.

Imagining that we choose a space-time point (x,t) at ran-
dom, we now consider the probability distribution functio
for uAu ~the magnitude ofA), Ar5Re@A# ~the real part of
A), and Ai5Im@A# ~the imaginary part ofA). We denote
these distribution functionsP(uAu),Pr(Ar),Pi(Ai), and we
compute them via histogram approximations using the val
of uAu,Ar , andAi from each of the 2563256 grid points at
105 time frames@10#. @We observe about 15 bursts in ea
frame. See Fig. 1~a!.# We find that these distributions ar
independent of the periodicity lengthL used in the computa
tion as long as it is sufficiently large compared to the spa
size of a burst, but is not so large that spatial resolution
our 2563256 grid becomes problematic. In our comput
tions of P, Pr , andPi , we chooseL520p.

Figure 2 shows the numerically computed probability d
tributionsPr(Ar) @Fig. 2~a!# andPi(Ai) @Fig. 2~b!# plotted as
open circles. Since Eq.~2! with d r5d i50 is invariant to the
transformationA→A exp(if) ~wheref is an arbitrary con-
stant!, we expect the distributionsPr andPi to be the same
to within the statistical accuracy of their determinations. T
is born out by Fig. 2. In order to highlight the essential ro
that nonlinearity plays in determining these distribution fun
tions, we have also computed them after randomizing
phases of each Fourier component. That is, represen
A(x,t) as

A~x,t !5(
k

ak~ t !exp~ ik•r !, ~3!

FIG. 2. Probability distribution functions obtained from nume
cal solution of Eq.~2! using the same parameters as in Fig. 1. T
circles are data forPr andPi , while the pluses are the probabilit
distributionsPr8 and Pi8 obtained from the phase randomized am
plitude.
3-2
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STATISTICS AND CHARACTERISTICS OF . . . PHYSICAL REVIEW E 67, 026203 ~2003!
where k5(2mp/L,2np/L), we form a new amplitude
A8(x,t) as

A8~x,t !5(
k

ak~ t !exp~ ik•r1 iuk!, ~4!

where for eachk, the angleuk is chosen randomly with
uniform probability density in@0,2p#. The probability dis-
tribution functions for the real and imaginary parts of t
randomized amplitudesA8 are shown as pluses in Fig. 2
Note that by construction,A and A8 have identical wave
number power spectra. Due to the random phases,A8 at any
given pointx can be viewed as a sum of many independ
random numbers~the Fourier components!. Hence, thePr
and Pi distributions are expected to be Gaussian, lnPr,i

;@(const)2(const)Ar ,i
2 #. This is confirmed by the semilog

plots of Fig. 2, where the data plotted as pluses can be
fit by parabolas.

The above comparisons with the phase randomized v
able A8 are motivated by imagining the hypothetical situ
tion where the amplitude is formed by the superposition
many noninteracting linear plane waves. In that case,
would have an amplitude field of form

(
k

bk~ t !exp~ ik•r1 ivkt !. ~5!

Becausevk is different for differentk, the phases becom
uncorrelated for sufficiently large timet.

Comparing the data fromA and A8 in Fig. 2, for small
values ofAr andAi , the PDF’s are nearly Gaussian. This c
be attributed to near linear behavior of small amplitu
waves. On the other hand, for the tails of the distributio
we note substantial enhancement relative to the Gaus
distributions. These must be due to coherent phase cor
tions resulting from nonlinear interaction of different wa
number components ofA. Such phase coherence is implie
by the observed coherent localized burst structures.

Figure 3 shows the numerically obtained distributi
P(uAu) plotted as circles and the probability distribution f
the phase randomized amplitudeuA8u plotted as pluses
Again, the enhancement of the large amplitude tail is e
dent. Note that the vertical axis in Fig. 3 is logarithm
while the horizontal axis isuAuh. Here we choose the powe
h50.8 so that the largeuAu data in this plot are most nearl
fit by a straight line. That is, we attempt to fitP(uAu) using a
stretched exponential. The slope of the straight line in
figure is chosen to match the largeuAu data. Thus, over the
range ofuAu accessible to our numerical experiment, we fi
that the enhanced largeuAu tail probability density is roughly
fit by a stretched exponential@11#,

P~ uAu!;exp~2zuAu0.8!. ~6!

B. Two-dimensional model with parametric forcing „d r ,d iÅ0…

We now report similar results for the case of parame
forcing, Eq.~2! with d r ,d iÞ0 and the minus sign chosen
the first term on the right side of Eq.~2!. In this case, the
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instability of small amplitude waves is caused by the pa
metric forcing~nonzerod r ,i) and the2A term represents a
linear wave number independent damping. This model
parametric forcing was introduced in@12# and has been use
to model various situations. One such situation is that
periodically forced chemical reactions@13#. Our motivation
for considering this model is the Faraday experiments
strong parametric forcing of surface water waves in Ref.@2#.
In that work, intermittent formation of large localized surfa
perturbations results in splash and droplet formation.

Parameters for our numerical simulations are the sam
in Sec. II A except that nowd r5d i55. Again coherent lo-
calized structures, ‘‘bursts,’’ develop rapidly and occur inte
mittently throughout the spatial domain, Fig. 4~a!. As in Sec.
II A, the typical lifetime of a burst is less than 0.2 time unit
and the maximum amplitudes of bursts are different for d
ferent bursts.

The PDF,P(uAu) again shows enhanced probability fo
large amplitude as compared to a Gaussian. Also show
Fig. 4~b! is a straight line of slope 0.8, suggesting that t
tail of the PDF is roughly consistent with a stretched exp
nential over the limited range available. The circles in Fig
show the PDF’s of the real and imaginary parts ofA, while
the pluses are data for the PDF’s after randomizing
phase. The shape of the PDF’s around the central pa
nearly Gaussian. In contrast, at large amplitude the PDF’s

FIG. 3. Probability distribution functions before randomizin
the phases of the solutions (s) and after randomizing the phase
(1). Note that the horizontal axis isuAuh, where the exponenth
50.8 is chosen to yield approximately linear dependence
ln@P(uAu)# on uAuh for large values ofuAu.

FIG. 4. Solutions of the model with parametric forcing.~a!
Snapshot ofuAu. Dark regions have high amplitudes.~b! P(uAu) vs
uAuh, whereh50.8. ~See caption in Fig. 3.!
3-3
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J.-W. KIM AND E. OTT PHYSICAL REVIEW E67, 026203 ~2003!
significantly non-Gaussian. A major difference with the ca
d r5d i50 is that, with parametric forcing, the model is n
invariant toA→Aeif, and thusPr and Pi may be expected
to evidence differences not present ford r5d i50. This is
seen to be the case in Fig. 5.

III. CHARACTERISTICS OF INDIVIDUAL BURST
EVENTS

Solutions of the CGL equation with largea andb may be
expected to have features in common with solutions of
NLS equation. It is known that the NLS equation yields l
calized events which develop finite time singularities wh
the amplitude becomes infinite@4#. While it is difficult to
understand the dynamics of the solutions of CGL equa
from direct rigorous analysis, the solutions of the NLS eq
tion are relatively well understood. Thus, we analyze
dynamics of individual CGL bursts guided by the know
localized self-similar collapsing solution of the NLS equ
tion.

The NLS equation has a special solution@14# of the form

A5eiutR~r !, r 5Ax21y2, ~7!

where the radial functionR(r ) satisfies

S ]2

]r 2
1

1

r

]

]r D R2jR1R350,

U]R

]r U
r 50

50, R~`!50, ~8!

wherea5b, j5u/b. Since Eq.~1! is invariant under the
scaling transformation@15#,

A~x,t !→L~ t !21A~k,t!eiLL̇ uku2/4, ~9!

whereL(t) tends to zero ast* →t, t,t* , and

k5
x

L~ t !
, t5E

0

t 1

L2~s!
ds, ~10!

a family of collapsing solutions of the NLS equation is giv
by the rescaled solution of Eq.~8!.

FIG. 5. Pr(Ar) andPi(Ai) with parametric forcing. The numeri
cal parameters are the same as those for Fig. 4. The circles
PDF’s forAr andAi before randomizing the phases of the solutio
while pluses are PDF’s after randomizing the phases.
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With these considerations, we test the expected appr
mate self-similarity of individual bursts observed in our n
merical solutions of Eq.~2!. We consider three typical burst
that occur at different times and spatial positions. In parti
lar, we choose these three as the three dark regions in
1~a! whose spatial maxima have the time dependen
shown as thick solid lines in Fig. 1~b!.

In Fig. 6~a!, we plot thex dependence ofuAu at constanty
for each of these bursts at the time that they reach t
maximum amplitude~the positions inx of the maxima have
been shifted tox50 and the constanty value for each is at
the location of uAumax). Note that, when they reach the
maxima, the three bursts have different amplitudes a
width. We rescale the amplitude and spatial coordinate
suggested by Eqs.~9! and~10!, uÃu5uAu/L and x̃5x/L, and
we takeL5uAumax ~which normalizesuÃumax to 1!. The re-
sulting data are plotted in Fig. 6~b! along with the solution of
Eq. ~8!. @We again rescaleR(r ) using Eqs.~9! and~10!, and
we note that, after this rescaling, the result is independen
the value ofj50.1 in Eq.~8!.# The three burst profiles show
evidence of collapsing onto the theoretical radial solution

Now, we consider the time dependence of a single bu
We select the burst at the grid point (x,y)5(51.1,25.5)~see
caption to Fig. 6! and investigate the evolution of its shap
and height. We display profiles of the burst at five differe
times in Fig. 7~a!. Rescaling each profile using Eqs.~9! and
~10!, and definingL in the same way as before, the fou
profiles at the first four times approximately collapse on
the radial solution of Eq.~8! as shown in Fig. 7~b!. When the
burst reaches its maximum amplitude, the amplitude at so
distance away from the center becomes zero~see the ampli-
tude profile att5t3). After that, the center decays very ra
idly ~see the amplitude profile att5t5). An important differ-
ence between the NLS equation and the CGL equation
that the CGL equations have additional dissipative terms~the
ones added toia and ib). We suspect that these terms m
become dominant after the collapse and cause the bur
decay from the center.@Note that in this section and th
following section, we present numerical results for Eq.~2!
with d r5d i50. However, we have also verified that th
CGL model with parametric forcing also has similar se
similarity properties.#

are
,

FIG. 6. Self-similar bursts.~a! Enlarged plots of a burst a
t1(s)510.448 at grid point (x,y)5(15.2,22.1), and t2(n)
510.530 at grid point (51.1,25.5), andt3(h)510.644 at grid point

(57.4,38.8).~b! Scaled profiles, whereuÃu5uAu/L, x̃5x/L, andL
5uAumax at t1 , t2, andt3. The solid line represents the radial sol
tion of Eq. ~8!.
3-4



lu
ri-
c

y

m

-
t
h
i-
th

n

in

es
at

ks
ar

f
st
e

t

elf-

he

f

r
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IV. STATISTICS OF BURSTS

The self-similar properties of bursts imply that the so
tions of the CGL model consist of self-similar bursts of va
ous maximum heights. Thus, we expect that the enhan
tail ~the deviation from the Gaussian distribution! of the am-
plitude probability distributionP(uAu) can be understood b
the statistics of bursts. In particular, we considerg(h), the
frequency of bursts that have maximum heighth, and a dis-
tribution Pj (uAu) defined for an individual burst~burst j ), as
follows.

We define the time interval for each burst as the ti
between when its peak value exceeds 2uAuavg and when its
peak value drops below 2uAuavg @typically the time duration
of a burst is less than 0.2, see Fig. 1~b!#. Here uAuavg is the
space average ofuAu over the entire spatial grid of the simu
lation at each timet @ uAuavg is approximately constant a
about 0.3 over all time steps in the simulation, see the das
line in Fig. 1~b!#. Consistent with the observation that a typ
cal burst has radial symmetry, we define the domain of
burst to be a circular region of radiusr e f f centered at the
burst maximum, wherer e f f is the maximum radius of a
circle such that the average ofuAu over the perimeter of the
circle is greater than 2uAuavg ~typically, 1.23<r e f f<4.91).
In Fig. 8~a!, we show the distributionPj (uAu) for the three
bursts in Fig. 1~b! ~thick solid lines!. The first burst (j 51)
hash54.52 and is plotted as the open circles in Fig. 8~a!; the
second burst (j 52) hash56.31 and is plotted as the ope
triangles; and the third burst (j 53) hash53.85 and is plot-
ted as the open squares. These distributions are obta
from histograms of the values ofuAu at grid points in the
domains and time steps in the duration of each of th
bursts. We obtaing(h) by counting the number of bursts th
have maximum heights betweenh and h1Dh, whereDh
50.1 @see Fig. 8~b!#. @In Fig. 8~a!, Pj (uAu) is not plotted for
uAu,2uAuavg , since, by our procedure this range lac
meaning, and since we are interested in the behavior at l
values ofuAu.# We note that thePj (uAu) in Fig. 8 all approxi-
mately coincide foruAu,h. Thus the only characteristic o
the bursts on whichPj (uAu) depends is the maximum bur
amplitudeh at which Pj (uAu) goes to zero. To incorporat
this fact, we replacePj (uAu) by the notationPh(uAu) @16#.

The above suggests thatP(uAu) can be obtained from the

FIG. 7. Self-similarity of single burst.~a! Enlarged plots of a
burst at t1(s)510.50, t2(h)510.52, t3(n)510.53, t4(L)

510.54, and t5(3)510.55. ~b! Scaled profiles, whereuÃu
5uAu/L, x̃5x/L, andL5uA(r )umax at t1 ,t2 ,t3, and t4. The solid
line represents the solution of Eq.~8!.
02620
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following approximation@17#:

P~ uAu!;E
0

`

g~h!Ph~ uAu!dh, ~11!

wherePh(uAu) is a probability distribution of a single burs
whose temporal maximum amplitude ish. @Note thatPh(uAu)
is estimated from numerics only because the known s
similar solution is not valid after the collapse.# SincePh(uAu)
vanishes foruAu.h and because thePh(uAu) approximately
coincides foruAu,h @see Fig. 8~a!#, we approximatePh(uAu)
as

Ph~ uAu!;C21~h!u~h2uAu!P* ~ uAu!, ~12!

C~h!5E
0

h

P* ~ uAu!duAu, ~13!

where C(h) is a normalization factor@C(h);1, when h
.1; see the inset on Fig. 8~b!#, u(h2uAu) is a step function,
andP* is the distribution that we numerically compute at t
largest value ofh considered (hmax56.31). Using Eqs.~11!
and ~13!, we can further approximateP(uAu) as

P~ uAu!;E
0

`

C21~h!u~h2uAu!g~h!P* ~ uAu!dh

;P* ~ uAu!E
uAu

`

C21~h!g~h!dh. ~14!

@The integral in Eq.~14! is the cumulative frequency o
bursts that have maximum height greater thanuAu.#

Figure 8 shows the numerically obtainedg(h) and
P* (uAu). InsertingP* (uAu) into Eqs.~13! and ~14!, we ob-
tain the prediction forP(uAu) plotted as pluses in Fig. 9 fo
uAu.2uAuavg . This appears to agree well with theP(uAu)
obtained from our numerical solutions of Eq.~2! ~open
circles!. @Note that we shift the predictedP(uAu) ~pluses! to
the P(uAu) ~open circles! obtained from Eq.~2! after remov-
ing data points foruAu,2uAuavg .]

FIG. 8. Statistics of localized events~‘‘bursts’’ !. ~a! Phj
(uAu) at

three different times:t1(s)510.448 andh54.52, t2(n)589.0
andh56.31, andt3(h)594.0 andh53.85. ~b! The frequency of
bursts that have maximum heighth, g(h). The inset indicatesC(h)
vs h defined in Eq.~13!.
3-5
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V. CONCLUSION

We find from our CGL solutions that the probability fo
large amplitude is greatly enhanced relative to the expe
tion based on Gaussian behavior. On the other hand,
small A, Pr(Ar) and Pi(Ai) are approximately Gaussian, a
is the case for a random linear superposition of waves.
also observe the self-similar properties of individual burs
which allow us to consider the large amplitude behavior

FIG. 9. P(uAu) vs uAu. Circles representP(uAu) obtained di-
rectly from our numerical solutions of Eq.~2!, while pluses repre-
sentP(uAu) obtained usingP* (uAu) andg(h) from Fig. 8, and Eqs.
~11!–~14!.
e

e
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our CGL solutions as composites of coherent self-sim
bursts. Based on this, the observed non-GaussianP(uAu) can
be understood by the nonlinear characteristics of individ
burstsPh(uAu) combined with the statistics of burst occu
rencesg(h).

These results lead us to conjecture the following pict
of rare intense events in our model. Linear instability leads
a background of relatively low amplitude waves that a
weakly interacting and result in a randomlike, incohere
background and lowuAu Gaussian behavior ofPr(Ar) and
Pi(Ai). When, by chance, this incoherent behavior results
local conditions conducive to burst formation, nonlinear, c
herent, self-reinforcing collapse takes over and promote
large growth and spiking ofA. We believe that this genera
mechanism may be operative in a variety of physical sit
tions in which rare intense events occur~e.g., the water wave
experiments of Ref.@2#!.
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