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We study the statistics and characteristics of rare intense events in two types of two-dimensional complex
Ginzburg-LandayCGL) equation based models. Our numerical simulations show finite amplitude collapselike
solutions which approach the infinite amplitude solutions of the nonlinear &iciger equation in an appro-
priate parameter regime. We also determine the probability distribution function of the amplitude of the CGL
solutions, which is found to have enhanded compared to Gaussjgorobability for the amplitude to be large.

Our results suggest a general picture in which an incoherent background of weakly interacting waves, occa-
sionally, “by chance,” initiates intense, coherent, self-reinforcing, highly nonlinear events.
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I. INTRODUCTION Bernard convectiorf7], and Taylor-Couette flof8]. In the
limit of zero dissipation or instability, the CGL equation ap-
Many spatiotemporal dynamical systems show rare inproaches the NLS equation. For small nonzero dissipation or
tense events. One example is that of large height rogue oceamstability, the CGL equation displays a solution similar to
waves[ 1]. Another example occurs in recent experiments orthe NLS collapse solution, but with a large fin{tather than
parametrically forced surface waves on water in which highinfinite) amplitude at the collapse timg3]. Furthermore,
spikes (burstg on the free surface form intermittently in over a sufficiently large spatial domain, these events occur
space and timg2]. Other diverse physical examples also intermittently in space and time. Thus, in this parameter re-
exist (e.g., tornados, large earthquakes, )etEhe character- gime, the CGL equation may be considered as a model for
istic feature of rare intense events is an enhanced tail in théhe occurrence of rare intense events.
event size probability distribution function. Here, by en- In this paper, we study the statistics and characteristics of
hanced we mean that the event size probability distributiorfare intense events in a two-dimensional CGL-based model.
function approaches zero with increasing event size mucfihe probability distribution functioPDF of the amplitude
more slowly than is the case for a Gaussian distributionof the solutions is observed to be non-Gaussian in our nu-
Thus these events, although rare, can be much more commanerical experiments. This non-Gaussian PDF is explained by
than an expectation based on Gaussian statistics would indike nonlinear characteristics of individual bursts combined
cate. The central limit theorem implies Gaussian behavior fowith the statistics of bursts. The model equation we investi-
a quantity that results from the linear superposition of manygate is
random independent contributions. Non-Gaussian tail behav- A
ior can result from strong nonlinearity of the events, and _ . 2 . .
enhancement of the event size tail might be expected if large gt EA-(LHI)|APAT (1-1B) VAT (6, +16)A*,
amplitudes are nonlinearly self-reinforcing. Such nonlinear 2
self-reinforcements are present in the nonlinear Stihger

(NLS) equation. In particular, the two-dimensional NLS Where (6, +i8)A* is a parametric forcing terif8]. We will
equation, consider two cases: one without parametric forcidg=( 5;

=0), in which case the plus sign is chosen in front of the
first term on the right-hand side of E@) [Eq. (2) is then the
usual CGL equatioly and one with parametric forcing, in
which case the minus sign is chosen. As previously dis-
exhibits “collapse” when the coefficienta and 8 have the cussed, we choose our parameters so that our mode(2Eq.
same sign3]. In a collapsing NLS solution, the complex is formally close to the NLS equatiofl). That is, we take
field approaches infinity at some point in space, and thisy,3>1,6,,6;, and for our numerical solutions we will re-
singularity occurs at finite time. The NLS equation is conser-strict attention to the case= 3. Note that the coefficient
vative in that it can be derived from a Hamiltonia?h/dt +1 for the first term, as well as the ones in{il«) and
=—i6H/SA*, where H[A,A*]=3[[a|Al*+B|VA|?]dx.  (1+ipB) represent no loss of generality, since these can be
In the case of nonconservative dynamics, inclusion ofobtained by suitable scaling of the timg) ( the dependent
lowest-order dissipation and instability terms leads to thevariable @A), and the spatial variablex]. In Sec. II, we
complex Ginzburg-LandayCGL) equation[4]. The CGL discuss the amplitude statistics of our two-dimensional CGL
equation has been studied as a model for such diverse situmodels with and without the parametric forcing term. We
tion as chemical reactiofb], Poiseuille flow[6], Rayleigh-  find that some of the PDF's are roughly consistent with a

oA ,
E=—|a|A|2A—|BV2A, )
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FIG. 2. Probability distribution functions obtained from numeri-
cal solution of Eq(2) using the same parameters as in Fig. 1. The
circles are data foP, andP;, while the pluses are the probability
distributionsP; and P obtained from the phase randomized am-
plitude.

FIG. 1. Solutions of the CGL modefa) Snapshot of the ampli-
tude|A| for L=207, a=B=30, At=1056,=6,=0, and a 256
X256 grid. (b) Amplitude profile vs time. Solid line indicates
| Al max Of the whole system, while thick solid lines indicate maxi-
mum amplitude of the localized eventhursts”). The dashed line

indicates the average amplitude p&| over the whole system these events are highly coherent. In this section, we will
|Alavg~0.3. study the statistical properties 8x,t).

Our numerical solutions of Eq(2) employ periodic
stretched exponential distributionP(|A|)~exp(-{A|”),  boundary conditions on a 256256 grid. We choose the pa-
where 7 is less than 1. In Sec. Ill, we investigate the char-rameters,a and 3, large enough ¢=p=30) so that the
acteristics of individual bursts. We compare our numericasolutions of our model are close to solutions of the NLS
CGL results with known collapse solutions of the NLS equa-equation. We choose the time step small enough to satisfy the
tion. The maximum amplitude obtained by many buigts ~ condition for unconditional stability of our second-order ac-
the “event size” statisticsis discussed in Sec. IV, Section V curate time integrationt=10"°). We use random initial
presents further discussion and conclusions. condition (at t=0, we generate random values for ampli-

Our results lead us to the following picture for the occur-tudes and phases at each grid ppitiocalized structures,
rence of rare intense events in our system. Linear instabilitybursts,” develop very rapidly and occur throughout the spa-
and nonlinear wave saturation lead to an incoherent bacKial domain. The typical lifetime of a burs&() is ~0.2 time
ground of small amplitude waves. This background is reunits. The maximum amplitudes of bursts are different for
sponsible for the observesiall |A| Gaussian behavior of different burst events.
our probability distribution functions. When, by chance, the Imagining that we choose a space-time point) at ran-
weakly interacting waves locally superpose to create condidom, we now consider the probability distribution functions
tions enabling nonlinear, coherent self-reinforcement, a lofor |A| (the magnitude ofA), A, =RegA] (the real part of
calized, collapselike event is initiated. Collapse takes overd), and A;=Im[A] (the imaginary part ofA). We denote
promoting large, rapid growth and spiking Af This is fol-  these distribution function®(|A|),P,(A,),P;(A;), and we
lowed by a burn-out phase in which the energy is rapidlycompute them via histogram approximations using the values
dissipated due to the generation of small scale structure b§f |A[,A,, andA; from each of the 256 256 grid points at
the spike. We believe that elements of the above generdlQ® time frames[10]. [We observe about 15 bursts in each
picture may be relevant to a variety of physical situationsframe. See Fig. (B).] We find that these distributions are
where rare intense events occ(e.g., the parametrically independent of the periodicity lengthused in the computa-
driven water wave experiments in Rg2]). tion as long as it is sufficiently large compared to the spatial

size of a burst, but is not so large that spatial resolution on
our 256x256 grid becomes problematic. In our computa-

Il. AMPLITUDE STATISTICS tions of P, P,, andP;, we choosd =20.
_ ) ) _ Figure 2 shows the numerically computed probability dis-
A. Two-dimensional model without parametric force tributionsP, (A,) [Fig. 2a)] andP;(A;) [Fig. 2b)] plotted as
(6=6=0) open circles. Since E@2) with §,= =0 is invariant to the

We first consider Eq2) with §,= §,=0 and with the plus transformationA— A exp(¢) (where ¢ is an arbitrary con-
sign in the first term on the right-hand side of the equationstany, we expect the distributionB, and P; to be the same
Figure 1a) shows a representation [#%(x,t)| [from numeri-  to within the statistical accuracy of their determinations. This
cal solution of Eq(2)] at a fixed instant, where large values is born out by Fig. 2. In order to highlight the essential role
are indicated by darker gray shades. As a function of timethat nonlinearity plays in determining these distribution func-
the localized dark shades occur in a seemingly random marions, we have also computed them after randomizing the
ner, become darkdi.e., increase their amplitufleand then phases of each Fourier component. That is, representing
go away(become light Furthermore, the maximum ampli- A(x,t) as
tudes also display apparent randomnégsse Fig. 1b)]. As
shown in Sec. lll, although the occurrence of these intense _ e
events is apparently erratic in time and space, individually At E abexpik-n), &)
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where k=(2mw«/L,2n7x/L), we form a new amplitude P(JA])
A’(x,t) as

A'(x,t):; a(tyexplik-r+i6,), (4)

where for eachk, the angled, is chosen randomly with
uniform probability density if 0,277]. The probability dis-
tribution functions for the real and imaginary parts of the
randomized amplituded’ are shown as pluses in Fig. 2. 10
Note that by constructionA and A’ have identical wave

nymber power Spectra. Due to the random pha§éat any FIG. 3. Probability distribution functions before randomizing

given pointx can be V'ewe_d as a sum of many 'ndependen[he phases of the solution®{ and after randomizing the phases

random numbersthe Fourier componentsHence, theP, .y "Note that the horizontal axis i\|”, where the exponeny

and P; distributions are expected to be GaussianPiln  —q g is chosen to yield approximately linear dependence of

~[(c0nst)—(const)6\,2'i]. This is confirmed by the semilog In[P(JAl)] on |A|” for large values ofA.

plots of Fig. 2, where the data plotted as pluses can be well

fit by parabolas. _ _ _ instability of small amplitude waves is caused by the para-
The above comparisons with the phase randomized varinetric forcing(nonzeros, ;) and the—A term represents a

able A" are motivated by imagining the hypothetical situa- jinear wave number independent damping. This model for

tion where the amplitude is formed by the superposition ofyarametric forcing was introduced 2] and has been used

many noninteracting linear plane waves. In that case, Wg, model various situations. One such situation is that of

would have an amplitude field of form periodically forced chemical reactiofi$3]. Our motivation
for considering this model is the Faraday experiments on
; ; trong parametric forcing of surface water waves in R&f.
K-r+ . S . . . ;
Ek: b(texplik-r+iwmd) ©) In that work, intermittent formation of large localized surface

perturbations results in splash and droplet formation.
Becausew, is different for differentk, the phases become Parameters for our numerical simulations are the same as
uncorrelated for sufficiently large tinte in Sec. IlA except that now, = 6;=>5. Again coherent lo-
Comparing the data fromk and A’ in Fig. 2, for small ~ calized structures, “bursts,” develop rapidly and occur inter-
values ofA, andA, , the PDF’s are nearly Gaussian. This canmittently throughout the spatial domain, Figa# As in Sec.
be attributed to near linear behavior of small amphtude” A, the typlcal lifetime of a burst is less than 0.2 time UnitS,
waves. On the other hand, for the tails of the distributions@nd the maximum amplitudes of bursts are different for dif-
we note substantial enhancement relative to the Gaussidfrent bursts.
distributions. These must be due to coherent phase correla- The PDF,P(|A|) again shows enhanced probability for
tions resulting from nonlinear interaction of different wave large amplitude as compared to a Gaussian. Also shown in
number components gk Such phase coherence is implied Fig. 4(b) is a straight line of slope 0.8, suggesting that the
by the observed coherent localized burst structures. tail of the PDF is roughly consistent with a stretched expo-
Figure 3 shows the numerically obtained distributionnential over the limited range available. The circles in Fig. 5
P(|A]) plotted as circles and the probability distribution for Show the PDF’s of the real and imaginary partsApfwhile
the phase randomized amp“tudA’l p|otted as p|uses_ the pluseS are data for the PDF's after rand0m|2|ng the
Again, the enhancement of the large amplitude tail is eviPhase. The shape of the PDF's around the central part is
dent. Note that the vertical axis in Fig. 3 is logarithmic, nearly Gaussian. In contrast, at large amplitude the PDF's are
while the horizontal axis i§A|”. Here we choose the power

7= 0.8 so that the largpA| data in this plot are most nearly A 3 P(A|
fit by a straight line. That is, we attempt to R{(|A|) using a " ‘(a) o
stretched exponential. The slope of the straight line in the + * * ..
figure is chosen to match the lar®| data. Thus, over the R o 2
range of|A| accessible to our numerical experiment, we find ¥ = & « © .
that the enhanced larga)| tail probability density is roughly s - : ;10
fit by a stretched exponentifl1], ANS L
P(IA)~exp — ¢|A°9). ® *rN 0

B. Two-dimensional model with parametric forcing (&, , 5,#0)

We now report similar results for the case of parametric FIG. 4. Solutions of the model with parametric forcing
forcing, Eq.(2) with &, ,6;#0 and the minus sign chosen in Snapshot ofA|. Dark regions have high amplitude®) P(|A|) vs
the first term on the right side of E@2). In this case, the |A|”, where»=0.8. (See caption in Fig. 3.
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FIG. 5. P,(A;) andP;(A;) with parametric forcing. The numeri- FIG. 6. Self-similar bursts(a) Enlarged plots of a burst at

cal parameters are the same as those for Fig. 4. The circles atg{O)=10.448 at grid point X,y)=(15.2,22.1), andt,(A)
PDF’s forA, andA; before randomizing the phases of the solutions,=10.530 at grid point (51.1,25.5), aig([1) =10.644 at grid point
while pluses are PDF's after randomizing the phases. (57.4,38.8).(b) Scaled profiles, wherfA|=|A|/L, x=x/L, andL

o _ _ _ _ =|A|maxatty, t,, andts. The solid line represents the radial solu-
significantly non-Gaussian. A major difference with the caseion of Eq. (8).

S6,= 6;=0 is that, with parametric forcing, the model is not . ) ) )
invariant toA—Ae®, and thusP, and P, may be expected With the'se'co_n5|de(at|pr_15, we test the expectgd approxi-
to evidence differences not present =35 =0. This is mate self-sm_ulanty of individual bu_rsts observed_ in our nu-
seen to be the case in Fig. 5. merical solutions of Ec(2). We consider three typical bursts

that occur at different times and spatial positions. In particu-
lar, we choose these three as the three dark regions in Fig.
IIl. CHARACTERISTICS OF INDIVIDUAL BURST 1(a) whose spatial maxima have the time dependences

EVENTS shown as thick solid lines in Fig.(f).

Solutions of the CGL equation with largeand 8 may be In Fig. 6(a), we plot thex dependence df\| at constany
expected to have features in common with solutions of thdor €ach of these bursts at the time that they reach their
NLS equation. It is known that the NLS equation yields lo- Maximum amplitudgthe positions inx of the maxima have
calized events which develop finite time singularities where?€€n shifted toc=0 and the constary value for each is at
the amplitude becomes infinifg]. While it is difficult to  the location of|A[n,,). Note that, when they reach their
understand the dynamics of the solutions of CGL equatiofn@xima, the three bursts have different amplitudes and
from direct rigorous analysis, the solutions of the NLS equaVidth. We rescale the amplitude and spatial coordinate as
tion are relatively well understood. Thus, we analyze thesuggested by Eq$9) and(10), |A|=|A|/L andx=x/L, and
dynamics of individual CGL bursts guided by the known we takeL =|A|,ax (Which normanzeQNmaX to 1). The re-
localized self-similar collapsing solution of the NLS equa- sulting data are plotted in Fig(l§) along with the solution of
tion. Eq. (8). [We again rescal®(r) using Eqs(9) and(10), and

The NLS equation has a special solut{dd] of the form  we note that, after this rescaling, the result is independent of

) the value ofé=0.1 in Eq.(8).] The three burst profiles show
A=e"R(r), r=yx"+y?, (7)  evidence of collapsing onto the theoretical radial solution.

Now, we consider the time dependence of a single burst.
We select the burst at the grid point, ) =(51.1,25.5)(see
caption to Fig. & and investigate the evolution of its shape
R-éR+R3=0, and height. We display profiles of the burst at five different
times in Fig. 7a). Rescaling each profile using Ed9) and
(10), and definingL in the same way as before, the four
profiles at the first four times approximately collapse onto
the radial solution of Eq(8) as shown in Fig. (b). When the
burst reaches its maximum amplitude, the amplitude at some
where a= 8, £é=06/8. Since Eq.(1) is invariant under the distance away from the center becomes Zsee the ampli-

where the radial functioiR(r) satisfies

(92
-
(9[‘2 ror
JR

o =0 R()=0, ®)

r=0

scaling transformatiofl5], tude profile at =t3). After that, the center decays very rap-
P idly (see the amplitude profile &&t5). An important differ-
A(X,t)—L(t) " *A(k, 7)glLIxT (9  ence between the NLS equation and the CGL equations is
that the CGL equations have additional dissipative tetimes
whereL (t) tends to zero as* —t, t<t*, and ones added toa andiB). We suspect that these terms may
become dominant after the collapse and cause the burst to
_ X _ft 1 d decay from the centefNote that in this section and the
K= , T= S, (10 . : .
L(t) 0 L%(s) following section, we present numerical results for E2).

with 6,=6;=0. However, we have also verified that the
a family of collapsing solutions of the NLS equation is given CGL model with parametric forcing also has similar self-
by the rescaled solution of E(B). similarity properties.

026203-4



STATISTICS AND CHARACTERISTICS @ . .. PHYSICAL REVIEW E 67, 026203 (2003

0

|A| |A| 10° — 1
: i . b
107" 2% C(h)
0.8 5
* 0
06 T IR a——
xx
04 10—3 xw);x
2/A| o
0.2 1o /avg x wx ]
o5 0 2 4 6h

FIG. 7. Self-similarity of single burst(@) Enlarged plots of a FIG. 8. Statis_tics of localized eventtbursts”). (a) Py, (|Al) at
burst at t;(O)=10.50, t,(0)=10.52, t3(A)=10.53, t4( <) three different timest,(O)=10.448 andh=4.52, t,(A)=89.0
~10.54, andts(x)=10.55. (b) Scaled profiles, whergA| ~ andn==6.31, andts(L))=94.0 andh=3.85. (b) The frequency of
—|AlIL, X=x/L. andL = |A(r) |y at ty ty ta andt,. The solid bursts that have maximum heigdhtg(h). The inset indicate€(h)

h defi in Eq(13).
line represents the solution of E@). vs h defined in Eq/(13)

IV. STATISTICS OF BURSTS following approximation17]:
The self-similar properties of bursts imply that the solu- .
tions of the CGL model consist of self-similar bursts of vari- P(|A|)~f g(h)P,(|A])dh (11)
ous maximum heights. Thus, we expect that the enhanced 0 '

tail (the deviation from the Gaussian distributjaf the am-

plitude probability distributiorP(|A[) can be understood by whereP,(|A|) is a probability distribution of a single burst
the statistics of bursts. In particular, we consid¢h), the  whose temporal maximum amplitudetisiNote thatPy,(|A|)
frequency of bursts that have maximum heightind a dis-  js estimated from numerics only because the known self-
tribution P;(|A[) defined for an individual burgburstj), as  similar solution is not valid after the collap$&incePy,(|A|)
follows. vanishes fofA|>h and because the,(]A|) approximately

We define the time interval for each burst as the timecoincides fof A|<h [see Fig. a)], we approximat®,,(|A|)
between when its peak value exceeds|2,, and when its  5g

peak value drops belowll«_‘k|awg [typically the time duration
of a burst is less than 0.2, see Figb)l. Here|A|,,4 is the
space average 0A| over the entire spatial grid of the simu-
lation at each timet [|A|,,q is approximately constant at A
about 0.3 over all time steps in the simulation, see the dashed _

line in Fig. 1(b)]. Consistent with the observation that a typi- c(h) fo P (IADdIA, (13
cal burst has radial symmetry, we define the domain of the

burst to be a circular region of radiug¢ centered at the \yhere C(h) is a normalization factofC(h)~1, whenh
circle such that the average | over the perimeter of the angp s the distribution that we numerically compute at the

circle is greater than [2|,,q (typically, 1.23<r.<4.91).  |argest value oh considered lfiq=6.31). Using Eqs(11)
In Fig. 8a), we show the distributiof®;(|A|) for the three  4pq (13), we can further approximate(|A|) as
bursts in Fig. 1b) (thick solid lineg. The first burst [=1)

hash=4.52 and is plotted as the open circles in Fi@)gthe "

second burstj(=2) hash=6.31 and is plotted as the open P(|A|)~f c Yhyach—|Ahg(h)P, (JA))dh

triangles; and the third bursf € 3) hash=3.85 and is plot- 0

ted as the open squares. These distributions are obtained w0

from histograms of the values ¢A| at grid points in the ~P*(|A|)f C~*(h)g(h)dh. (14)

domains and time steps in the duration of each of these |Al

bursts. We obtaig(h) by counting the number of bursts that

have maximum heights betwednand h+Ah, whereAh [The integral in Eq.(14) is the cumulative frequency of

=0.1[see Fig. &)]. [In Fig. 8a), P;(|A|) is not plotted for  bursts that have maximum height greater thah]

|A|<2|A|a,q, since, by our procedure this range lacks Figure 8 shows the numerically obtaineg(h) and

meaning, and since we are interested in the behavior at large, (JA|). InsertingP, (|A]) into Egs.(13) and(14), we ob-

values of|A|.] We note that thé;(|A|) in Fig. 8 all approxi-  tain the prediction folP(|A[) plotted as pluses in Fig. 9 for

mately coincide fojA|<h. Thus the only characteristic of |A|>2|A|,,q. This appears to agree well with tHe(|A|)

the bursts on whiclP;(|A|) depends is the maximum burst obtained from our numerical solutions of E() (open

amplitudeh at which P;(|A|) goes to zero. To incorporate circles. [Note that we shift the predictelél(|A|) (pluses$ to

this fact, we replac@j(|A|) by the notationP,,(|A|) [16]. the P(|A|) (open circleg obtained from Eq(2) after remov-
The above suggests tha{|A|) can be obtained from the ing data points fofA|<2|A|,,q ]

Pr(|AD~C™*(h)6(h— AP, (|A]), (12
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P(IA]) [ our CGL solutions as composites of coherent self-similar
5 bursts. Based on this, the observed non-Gaud3{|) can
1072 be understood by the nonlinear characteristics of individual
burstsPy(]A]) combined with the statistics of burst occur-
107 rencesg(h).
These results lead us to conjecture the following picture
of rare intense events in our model. Linear instability leads to
107° a background of relatively low amplitude waves that are
weakly interacting and result in a randomlike, incoherent
10—80 background and loWA| Gaussian behavior d?,(A,) and

Pi(A;). When, by chance, this incoherent behavior results in
local conditions conducive to burst formation, nonlinear, co-

FIG. 9. P(|A]) vs |A|. Circles represenP(|A|) obtained di-  herent, self-reinforcing collapse takes over and promotes a
rectly from our numerical solutions of Eq), while pluses repre- large growth and spiking of. We believe that this general
sentP(|Al) obtained using, (|A[) andg(h) from Fig. 8, and Eqs.  mechanism may be operative in a variety of physical situa-
(1)-Q14). tions in which rare intense events occ¢arg., the water wave

experiments of Ref.2]).
V. CONCLUSION
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